

ONBOARD CHARGER

OBC_22kW-450-70 OBC_22kW-800-40 OBC_22kW-850-32

Stercom Power Solutions GmbH

Ziegelstraße 1 D-83629 Weyarn Germany Tel. +49 8020 33996-0 E-Mail: info@stercom.de Internet: www.stercom.de OBC © Stercom GmbH 2023 Version 2.2 11/2023

ONBOARD CHARGER

OBC_22kW-450-70 OBC_22kW-800-40 OBC_22kW-850-32

HIGHLIGHTS

- Silicon Carbide Technology
- versions

• Ultra compact 22 kW OBC with the output versions 450V/70A, 800V/40A, or 850V/32A Very efficient switching technology using • Identical outline dimensions and plugs of all

• Suitable for 12V/24V electronic supply • AC input power factor > 99 %, very low THD • Very flexible AC input configuration compatible with all major types of CCS/Type2 inlets • Supports AC charging via AC Wallbox according to EC 61851 as well as Direct AC supply · Integrated DC charging with EPLC- (Embedded Power Line Communication) charge controller fully compatible with DIN SPEC 70121 and ISO15118 Very low power consumption in "Sleep Mode"

Onboard Charger

OBC_22kW-450-70 OBC_22kW-800-40 OBC_22kW-850-32

CAN COMMUNICATION

- Physical CAN layer using CAN 2.0B with 29-bit identifier
- CAN identifier structure compliant with SAE J 1939
 protocol
- Internal Cluster Communication via internal "Bridge CAN" 2.0B
- CAN Matrix and CAN DBC File available on request

AC INPUT CONFIGURATION

- AC Wallbox Charging according to 61851-1
- Compatible with all kinds of CCS/Type 2 inlets
- Supports all inlet features like PP/CP communication, 12V/24V actuators, lock pilot contacts, temperature sensors
- Direct AC input mode
- 32A single phase operation

- High voltage, high energy and power for on and off charging
- Public transportation (e-busses)Construction machinery
- Municipal vehicles
- Marine eDrives

INTELLIGENT CHARGING FOR BATTERY CONSERVATION

- CCCV charging optimized for all types of Li-batteries
- 450V/70A, 800V/40A or 850V/32A versions to perfectly suit high- or medium-voltage battery arrangements
- Compatible with all major BMS systems
- Parallel operation
- Direct DC charging control using EPLC option
- Control outputs for direct DC-charging

Embedded Power Line Communication (EPLC)

The Embedded Powerline Communication (EPLC) module is an integrated option to enable DC charging. This EPLC enables power line charge control communication of one or multiple OBCs via a CCS plug to the DC Charging station (EVSE).

EPLC DC CHARGE CONTROLLER

- DC charging via CCS Type2 using the EPLC charge controller
- Fully integrated "Embedded PowerLine Communication"
- EPLC handles communication between the EV-BMS and the charging station
- Autonomous control of the vehicle's DC Actuators in DC charging mode
- ISO 15118 supports "plug and charge" as well as certification exchange
- OBC acts as a "gateway" between the DC charging station and the Battery Management System
- No further EVSE or EVCC module necessary in the vehicle
- OBC controls HV components (DC contactors) and BMS in direct DC charge mode
- DC charging according to DIN Spec 70121 and enhanced protocol according to DIN Iso 15118

• • • • • • • 5

CLUSTER OPERATION

- In "Paired Operation" always two OBCs share one 63A AC inlet
- Cluster communication via an independent "CAN Bridge"
- Cluster configuration with 3-bit jumpers in the signal plug

TECHNICAL DATA

AC input			Value	Units		
Voltage range three-phase (phase – phase L1 \rightarrow L2 \rightarrow L3)	(EU) 346 – 440 (US) 190 - 504					
Voltage range single-phase (L1 – N)	(EU) 200 – 250 (US) 95-135 Vrms					
Max. input current @ 3~ input (per phase)	32			Arms		
Max. input current @ 1~ input		32 Arms				
Input frequency	45 – 65 Hz					
Power factor (at three – phase)	> 99 %					
Starting inrush current	< 50 A					
Leakage Current @ 3~ input	< 3.5 mA					
DC Output	OBC_22KW	-450	OBC_22KW-	800	OBC_22KW	/-850
Voltage range	200-450	VDC	420-800	VDC	550-850	VDC
Max Charging Current @ 3~ input	70	A	40	А	32	Α
Max Charging Power @ 3~ input	22	kW	22	kW	22	kW
Max Charging Current @ 1~ input	32	А	32	А	32	А
Max Charging Power @ 1~ input	6.5	kW	6.5	kW	6.5	kW
Output Voltage ripple @ 3~ input	±2	%	±2	%	±2	%
Switch ON time	5	S	5	S	5	S
Output Voltage tolerance @ 3~ input	±1	%	±1	%	±1	%
Charging Mode	CCCV		CCCV		CCCV	
Output current tolerance @ 3~ input	±5	%	±5	%	±5	%
Output current ripple @ 3~ input	±2	%	±2	%	±2	%

Mechanical data/cooling

Housing	Aluminum				
Weight	18	kg			
Outline dimensions of Die Casted Enclosure	491.8 x 347.9 x 95.2	mm			
Outline Dimensions of CNC Machined Enclosure	488.4 x 347.8 x 95.2	mm			
IP protection	IP6k9k				
Nom. liquid volume flow recommended	8	ltr/min			
Min. liquid volume flow	6	ltr/min			
Nom. liquid pressure drop (Tests done a Die Casting OBC Enclosure)	113	mbar@ 8 ltr/min see table below			
Max. liquid pressure	2 bar				
Cooling Liquid Specification	min. 50% water \rightarrow max. 50% antifrogen	Example Gylsantin G48 Ready Mix			
Liquid Temperature Range without power derating	-40 to +50	°C			
DC Current derating start at	+50	°C			
Protection of Over Liquid Temerature	+70	°C			
Liquid Output Temperature rise	< 5	°C			

Safety	
Isolation input/output	
Functional safety	
AC overvoltage protection	
AC undervoltage protection	
AC overcurrent protection	
Open circuit protection	
Output overcurrent protection	
Overtemperature	
Insulation resistance	
+24 V /+ 12 V reverse polarity protect	
Communication failure protection	

	Interfaces at X3
Internal	2x CAN Communication Interface IN and OUT
DIN E Pa	Type 2 / CCS Inlet interface
Commu Communi	Embedded PLC Interface Optional
Digital Inputs ar swi	Inlet Lock Mechanism Control
Ş	Electronic Supply voltage
:	LED supply
Int	HVIL Loop
Control signals of DC Charge back Interface Pins a	DC Charge Inter-Connection

Stercom follows the policy of permanent product improvements. Therfore we reserve the right to make changes and improvements without prior notice.

DIN EN 61851-1:2012-01---Quality Management Level ---- \checkmark ---- \checkmark ---- \checkmark ---- \checkmark ---- \checkmark ---- \checkmark ----MΩ >5 \checkmark ----CAN timeout protection ----

• • • • • • • •

7

Description

Vehicle CAN-BUS: SAE J1939 I CAN-BUS: CAN2.0B (Service/Diagnostic CAN)

EN 61851-1:2012-01, Type2 and CCS charging aired operation mode with 63 A Type 2 inlet

Cluster Operation in Direct AC Mode

unication according to DIN SPEC 70121:2012-08

ication according to DIN ISO 15118 in preparation

nd Outputs to control and monitor Inlet Lock mechanism vitchable to 12V and 24V (by SW parameter)

9-30 V @ 20 W max. power consumption

3xOutput for 3 LED's (Green, Blue, RED) 5 V/5 mA

HVIL at control connector X3 Current capability up to max. 20mA ternal 22 Ohm resistor in series connected

Relays(+/-) are ready for customer to be used. Furthermore, the Feedare also ready for customer to be used in DC Charging mode.

Standards	Description	Remark
DIN EN 61851-1:2012-01	Electric vehicle conductive charging system	EMI, isolation requirements
DIN EN 61851-21-1:2018-04	EMI requirements	
ECE R10 V6 20 November 2019	Uniform provisions concerning the approval of vehicles with regard to electromagnetic compatibility	Performed with single OBC, not applied for OBC \geq 2
IEC 62196-2	Type 2 AC inlet	
IEC 62196-3	CCS2 AC/DC inlet	
SAE J1939	Car vehicle CAN Bus standard	Optional
LV123	Electrical safety requirements	Optional
DIN SPEC 70121:2012-08	CCS DC charging	PLC communication, optional
DIN ISO 15118	CCS DC charging	Optional
IEC 60068-2-6: 2007-1	Environmental testing – Part 2-6: Tests – Test Fc: Vibra- tion (sinusoidal)	
IEC 60068-2-27: 2008-02	Environmental testing – Part 2-27: Tests – Test Ea and guidance: Shock	
IEC 60068-2-64: 2019-10	Environmental testing – Part 2-64: Tests – Test Fh: Vib- ration, broad-band random and guidance	
MBN LV 124-2: 2013-08	Electric and Electronic Components in Motor Vehicles up to 3,5t General Requirements, Test Conditions and Tests Part 2: Environmental Requirements	
ISO 16750-4: 2010-04-15	Road vehicles-Environmental conditions and testing for electrical and electronic equipment: Part 4: Climatic Loads	Test of the resistance to climatic and thermal stress, the functio- nality, the degree of protection according to the standards.

Stercom follows the policy of permanent product improvements. Therfore we reserve the right to make changes and improvements without prior notice.

Stercom Power Solutions GmbH Ziegelstraße 1 D-83629 Weyarn

Tel.: +49 (0) 8020 33996 0 Fax: +49 (0) 8020 33996 99 Email: info@stercom.de Website: www.stercom.de

